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Numerical simulations using the flux form of the conservation equations on a nonuniform, 
staggered grid are shown to require careful consideration with respect to the selection of the 
advcctive velocities used to calculate the flux transport terms. Results from both a simplified 
form of an urban boundary layer model and from a complex global climate model de- 
monstrate the appropriateness of the “flux-weighted” averaging technique which is presented 
in the paper as an alternative to linear averaging. 

1. INTRODUCTION 

As numerical models of the atmosphere have become more sophisticated, treatment 
of the advective terms has had to be improved in order to better represent real physical 
processes. One change has been the formulation of the advective terms in various 
‘Ylux” forms by use of the incompressible form of the continuity equation. For 
example, the “donor cell” method [l], used in an urban boundary layer model [2], 
is both transportive (as the effect of a perturbation in a transported property is advected 
only in the direction of the velocity) and mass conservative (as the integral conserva- 
tion relationships of the continuum equation are not violated [l]). Methods using 
centered space derivatives for the advection terms generally do not possess these 
properties; however, the donor cell method does somewhat retain the second-order 
accuracy of the centered space derivative approach while being mass conservative and 
transportative. 

In another example of a “flux form” treatment [3], a quadratic advection scheme [4] 
was modified for use in a global climate model because of geometric problems en- 
countered in a spherical coordinate system. The resulting finite difference formulation 
of the advective terms was identical to the quadratic scheme in the case of a constant 
flow on a uniform grid. However, under nonuniform conditions, the formulation 
possessed second-order accuracy and maintained mass consistency. 
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This paper is concerned with the application of flux methods to numerical models 
employing a staggered, nonuniform grid. Such models are thus able to obtain increased 
resolution in certain regions, and are therefore able to have velocity components 
represent inflow and outflow rates on various faces of particular grid volumes. In 
particular, a so-called “flux-weighting” technique is presented, in which the fluxes 
required in the finite difference analog to the advective terms are more correctly 
represented than those obtained from using a linear averaging scheme. Results from a 
simplified version of the URBMET (“urban meteorology”) urban boundary layer 
model [2] and from the full ZAM global zonal atmospheric model [5] are presented 
to illustrate the effects of using the proposed technique in conjunction with two 
previously documented schemes. 

2. APPLICATION IN A SIMPLIFIED FRAMEWORK 

The URBMET urban boundary layer model is a two-dimensional vertical plane 
model which has been used to study the flow over a rough, wet, warm city [6]. The 
model consists of two layers: (1) 0 -C z < h = 25 m, a lower analytical constant flux 
layer; and (2) h < z < H = 1900 m, an upper numerical transition layer in which the 
vorticity, heat, and moisture conservation equations are solved. Its grid is nonuniform 
and staggered, so that the two horizontal wind components, specific humidity, and 
the virtual potential temperature are located one-half a grid interval above and below 
the vorticity and streamline grid points. In addition, the grid points for the vertical 
component of the velocity are displaced one-half of a grid interval to the right and left 
of those for the vorticity. 

The transition layer is assumed to be hydrostatic and Boussinesq, with the latter 
assumption implying incompressible flow [7]. All lateral gradients are assumed to be 
zero, and only adiabatic motions are considered. 

The current series of simulations utilizes a simple form of URBMET, in which 
there is no moisture, eddy diffusion, or lateral wind component, and in which lapse 
rates are assumed to be adiabatic. In addition, the initial conditions specified an 
unrealistic, convergent flow, in which the magnitude of the horizontal wind speed 
varied only in the vertical. It was felt that this velocity distribution would severely 
test the proposed numerical schemes. 

With the above assumptions, the vorticity equation in the transition layer can be 
written as 

where u and w are the horizontal and vertical wind components, respectively, and 
where the form of vorticity 5 consistent with the hydrostatic assumption is 

5 = au/k. (21 
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Additional details concerning the constant flux layer equations and boundary condi- 
tions are found in Appendix A. 

A time splitting technique [6] is used to solve Eq. (l), in which first 

is solved, and then 

is solved. 
A finite difference analog of Eq. (3), which is to be conservative of 5, should relate 

the local time rate of change of &i,j) to the difference in the fluxes into and out of the 
volume (Fig. 1) which surrounds grid point (i,j), e.g., 

(5) 
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FIG. 1. Schematic representation of the horizontal fluxes in and out of the grid volume centered 
at the point (i, j). Also shown are the x and z direction grids, in which the advected fluid dynamic 
variables 5 are located at the centers of the grid volumes (shown as the dots), the “known” velocities 
are located halfway between the {-grid points (shown as the circles), and the “effective” advecting 
velocities uR and uL are located at the centers of the vertical walls perpendicular to the x- direction 
grid (shown as the crosses). 

where the subscripts R and L refer to quantities on the right and left vertical faces 
of the volume whose vertical boundaries at X, and X, are located halfway between 
c-grid points. The fluxes FR and FL represent the product of a velocity and a vorticity 
and the cap indicates values at (t + d t). The magnitude of the time step d t is computed 
[6] from 

At= . [ 0 75k 0 754- 
u” 1 W min ’ (6) 
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where the horizontal and vertical grid spacings, dx and dz, respectively, are not con- 
stants over the entire grid, as shown in Table I. 

TABLE I 

Grid Locations in URBMET for II Grid Points” 

iii z k-4 x (km) 

1 0 -30 
2 12.5 -20 
3 37.5 -12.5 
4 62.5 -7.5 
5 87.5 -5.0 
6 125 -2.5 
7 175 0 
8 225 2.5 
9 275 5.0 

10 325 7.5 
11 375 10.0 
12 450 15.0 
13 600 22.5 
14 850 32.5 
15 1200 47.5 
16 1650 67.5 

5 Height above the surface is in meters, indexed by j, and distance from the center of the grid is in 
kilometers, indexed by i. 

The donor cell method is a variation on simple “upstream dilferencing” in that the 
direction of uL and uR determine the correct values of 5 to use in calculating the 
fluxes FR and FL to be used in Eq. (5), as follows 

<R = &, j>, for uR > 0, 

CL = 5(i - 1,.l3, for uL > 0, 
(74 
V’b) 

<R = t? + 1, j), 

CL = 5w>, 

for r& < 0, 
for uL < 0. 

(7c) 
(74 

If a single velocity is used in forming the fluxes on the right-hand side of Eq. (5), the 
donor cell method reduces to the frequently used (in meteorology) simple upstream 
differencing technique, which has been shown to be less accurate than the donor cell 
method [8]. Also, if the interface values of 5 are obtained by a linear averaging tech- 
nique, then the donor cell scheme becomes identical to that of centered differencing, 
which is nontransportive. 

The velocities uL and UR represent “effective velocities” which must reproduce the 
combined effects of the flows through the upper and lower halves of the left- and 
right-hand faces of each volume. As shown in Fig. 2, the flow rates through the two 
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FIG. 2. Schematicliepresentation of the vertical grid spacing and horizontal velocities at any 
distance along the ho&ontal grid. Grid points with velocities evaluated from Eqs. (8a) and (8b) 
(shown as triangles) are located halfway between grid points at which the “effective” advective veloci- 
ties (shown as crosses) must be determined. 

halves of each face are not necessarily equal, due to the use of the staggered grid. The 
velocities uR and uL are obtained by averaging the flow rates at the two adjacent 
[-grid points. As shown in Fig. 1, this leads to the following expressions. 

UR = fdi + ‘&,j) = 8b(i + l,j) + u(&j)l, 

UL = u(i - *,j> = g&j) + u(i - l,j)]. 
(84 

(8’4 

This simple linear averaging procedure is valid, since the vertical faces of the volume of 
Fig. 1, upon which the grid points for uL and UR are located (shown by the crosses), 
are exactly halfway between successive b-grid points (shown by the dots). 

The main concern of this paper is the formulation of the appropriate weighting 
scheme to be used to calculate the correct velocities appearing in the extreme right- 
hand terms of Eqs. @a) and (8b) (which are located on thej grid line) from the “known” 
velocities (located on the (j f 4) grid lines) and shown by the circles in Fig. 1. 
An obvious approach is through linear interpolation, e.g., 

where 

u(i j) = 4j - 1) u&j + 2 + 43 42 - 3) , 4j) + dz(J’ - 1) 9 (9) 

h(j) = z(j + 1) -z(j). 

Use of Eq. (9) in conjunction with a similar expression for u(i + 1, j) in Eq. (Sa) 
yields the following form for UR 

5W2312-4 
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Application of the simple linear averaging technique expressed in Eqs. (8a) and (8b) 
to the velocities in Eq. (10) yields 

UR = dz(j - 1) u(i + 3J . -I- $1 + AZ(j) u(i + 4, j - a> 
d4.A + dz(j - 1) 9 (11) 

where u(i + Q, j f +) are the velocities midway between u(i, j f i) and u(i + 1, j f 4). 
For a positive value of nR , in association with the donor cell scheme, FR is therefore 

given by 

Ek = uR&kj). (12) 

For the limiting case in which dz(j) approaches zero, Eq. (9) indicates that u(i,,j) 
approaches u(i, j + +). As shown in Fig. 2, this might be a reasonable estimate for 
u(i,j), because of its close proximity to u(i, j + 4). However, the limiting value of 
Eq. (12), when uI( is given by Eq. (1 l), is given by 

FR = U(i + kj + 6)&j>. (13) 

This is not a reasonable estimate of the flux under the same conditions, because most of 
the fluid, based on the division of the region into cells, as shown in Fig. 2, is really 
moving with the speed of u(i + 4, j - 4). 

The approach here proposed for obtaining the correct “effective velocity” takes 
note of the discrete nature of the fluid structure which is created by finite differencing. 
Since the fluid in region dz(j) is moving with a speed of u(i + 6, j + $), while that of 
dz(j - 1) is moving at u(i + 4, j - &), a conservative, or “flux-weighting,” averaging 
procedure leads directly to the following expression for u(i, j) (as seen from Figs. 1 and 
2). 

u(i,j) = 
Liz(j) u(i, j + 3) $- dz(j - 1) u(i, j - 4) 

4j) + dz(j - 1) (14) 

Application of the procedure expressed in Eq. (14) to both of the velocities on the 
right-hand side of Eq. (8) leads directly to 

uR = Liz(j) u(i + 3, j -+ 4) + dz(j - 1) u(i + $, j - 4) 
4j) + Wj - 1) (15) 

When dz(j) is again hypothesized to approach zero, and when Eq. (15) is used for 
UR in Eq. (12), the flux now approaches 

FR = 4i + i,j - *MW. (16) 

As shown in Fig. 2, the above expression is a better estimate of FR than that given by 
Eq. (13), as most of the fluid is now moved with the speed u(i + a, j - 8). However, 
the new estimate of u(i, j) obtained from the limiting value of Eq. (14) is u(i, j - #, 
which is not as reasonable as that given in the previous case, because of the large 
value of dz(j - 1)/2 shown in Fig. 2. 
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Given the discrete nature of finite difference solutions, perhaps the best estimate of 
u(i,j), when it is not needed for a flux computation, is simply (as seen in Fig. 2) to set 
it equal to the average of the rates at which the fluid is moving immediately above 
and below that level, i.e., 

@,A = Mi,j + $1 + u(i,j - $11. (17) 
Note that both Eqs. (9) and (14) yield the above expression in the case of a uniform 
grid spacing, and that both Eqs. (12) and (15) also yield identical expressions for UR 
and hence FR under that special condition. A similar procedure must be followed for 
FL in Eq. (5) and for the fluxes in the vertical advection terms of Eq. (4). Details of 
the solution for the velocity components and for the constant flux layer variables 
are found in Appendix A. 

For the simple case described here, the initial wind field consisted of the u-compo- 
nents of an equilibrium Ekman-type wind spiral for the case of a geostrophic wind U 
of 3 m set-l and a surface roughness length of 50 cm. The vertical variation of the eddy 
viscosity coefficient K(z) was evaluated using a third-order polynomial [9]. 

The absolute magnitude of u(z) at a grid level j was initially constant, but negative 
values were specified at all grid points at i > 7. Thus the flow was initially specified 
to converge at a line midway between grid columns 7 and 8, i.e., at x = -1.25 km. 
Hence the w-field was initially zero at all grid locations, except those at the line of 
convergence where the values were positive. A maximum value of 4.45 m set-l was 
found at the upper most grid level. 

Results obtained using the simplified form of URBMET in conjunction with the 
“flux weighted” form of u(i, j) given by Eq. (14) and with the “linear weighted” 
form given by Eq. (9) are shown in Figs. 3 and 4, respectively. The vertical velocity 
field was selected for presentation because it clearly demonstrates the effect of using 
the correct weighting scheme when the value of a parameter at a grid point must be 
computed so as to represent the mean value over a grid interval. With the “linear 
weighted” form, the values change sign at adjacent horizontal grid locations, while 
with the “flux weighted” form, a more coherent pattern results. 

3. APPLICATION IN A FULL MODEL OF THE ATMOSPHERE 

A more accurate second-order alterantive to the donor cell formulation of an advec- 
tive flux term, and the one used in the ZAM model, can be derived by integrating in time 
and assuming that any fluid dynamic variable < varies linearly from i to (i + 1). The 
flux at (i + 4) is then the integral of 5 from (XR - UR Lit) to XR . This gives 

where 

(18) 

(1% 
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FIG. 3. The vertical velocity field computed from the URBMET model after 6 hours of simulated 
time using “flux-weighted” averaging to calculate the “effective” advective velocities. 
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FIG. 4. The vertical velocity field computed from the URBMET model after 6 hr of simulated 
time using linear-averaging to calculate the “effective” advective velocities. 
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and 
Ax(i) E x(i + 1) - x(i). 

Performing the integration yields 

(20) 

Note that, if we now calculate the change in concentrations in grid cell i due to fluxes 
on the right and left faces, as indicated in Eq. (5), with the following assumptions 

and 
u = UR = UL (22) 

Ax = dx(i - 1) = dx(i + 1) = Ax(i), (23) 

then Eq. (5) becomes 

( 1 & 
At i.j = & [(<i-l - ii+3 t$ + 2(5i+l - 25i + h-1) ($,“]* (24) 

This is the quadratic advection scheme for a regular grid [4], derivable by use of a 
Taylor expansion of 5 in x about x(i), followed by an evaluation of 5 at [x(i) - u At], 
i.e., at the point which will be advected to x(i) during time step At. 

The assumptions required to obtain the quadratic form, however, may not always 
be valid (e.g., for a nonuniform velocity, nonrectangular grid, etc.), and it is more 
conservative of the variable 4 to calculate the fluxes at each edge of the cell, and then 
take the divergence. It is quickly seen why use ofa staggered grid is appropriate, since 
the velocity is needed at the (i & 4) grid points. In two-dimensional models, the velo- 
cities are also usually offset in the second dimension for similar reasons. 

The ZAM zonal atmospheric model is a two-dimensional (latitude and vertical) 
global model developed to simulate the latitudinal variation of world climate. The 
model treats a moist atmosphere including precipitation and clouds, and has a detailed 
radiation calculation. Of relevance to this paper is that it computes the evolution of 
temperature, water vapor, surface pressure, and zonal and meridional winds using 
the appropriate conservation equations in their primitive form. This extensive inter- 
coupling precludes simplifying this model to treat just the single equation discussed 
in the previous section. The grid in the ZAM model is staggered such that temperature 
is defined at so-called even latitudes and even pressure levels, and the wind components 
are defined at odd latitudes and odd pressure levels. Although the latitude intervals are 
evenly spaced at IO”, the vertical levels are not evenly spaced in pressure coordinates 
(but are approximately evenly spaced in altitude). 

In the three-dimensional atmospheric model of [4], the quadratic advection scheme 
.given by Eq. (24) was used, and the resulting lack of conservation was small and could 
be tolerated because the computer runs were for reasonably short time periods, and 
because surface temperatures were held fixed (thus providing a buffer for energy 
balance errors). In assuring the necessary energy balances needed for the long-term 
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climate studies carried out with the ZAM model under conditions of varying surface 
temperature, it has been found necessary to use the flux form expressed in Eq. (21). In 
the implementation of this equation, the need for the proper “effective velocity” for 
advection of the temperature (that is, determining what velocity to use at the odd 
latitude, even pressure level) can best be illustrated by an example. 

Using the “flux-weighted” form of u(i,j) given by Eq. (14), the model produces 
reasonable and smooth patterns of the various field variables over very long runs 
(years of simulated time), as shown in Figs. 5 and 6. (The apparent absence of the 
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FIG. 5. FIG. 5. The near steady-state meridional velocity field computed from the ZAM model, after 1 The near steady-state meridional velocity field computed from the ZAM model, after 1 
year of simulated time, using “flux-weighted” averaging to calculate the “effective” advective veloci- year of simulated time, using “flux-weighted” averaging to calculate the “effective” advective veloci- 
ties. Solid contours are northerly flow, dotted contours are southerly. The contour interval is 1 kmhr-I. ties. Solid contours are northerly flow, dotted contours are southerly. The contour interval is 1 kmhr-I. 

iiON 70N 30N 10s 50s 90s 

Latitude -degrees 

FIG. 6. The near steady-state vertical velocity field computed from the ZAM model, after 1 year 
of simulated time, using “flux-weighted” averaging to calculate the “effective” advective velocities. 
Solid contours are downward flow, dotted contours are upward flow. The contour interval is 1 
decapascals hr-I. 



ADVECTION IN FLUX FORMULATIONS 145 

mid-latitude Ferrel cell is a result of the use in this study of an annual average model, 
thus not providing for the averaging of circulation over an annual solar cycle which 
gives the appearance of the Ferrel cell.) 

If the method of calculating the velocity is switched to the linear average given by 
Eq. (9), however, within 24 time steps (a simulated time of 12 hours), the wind and 
temperature fields break down into 10” (i.e., single grid spacing) wide convective cells, 
as shown in Figs. 7 and 8. A complete breakdown occurs after about 16 more time 
steps. It is interesting that the advection of temperature is the term which excites the 
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FIG. 7. The meridional velocity field computed from the ZAM model, after 12 hours of simulated 
time (starting from the near steady-state conditions of Fig. 5), using linear-averaging to calculate the 
“effective” advective velocities. Solid contours are northerly flow. dotted contours are southerly. _ , 
The contour interval is 2 km hr-‘. 
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FIG. 8. The vertical velocity field computed from the ZAM model, after 12 hours of simulated 
time (starting from the near steady-state conditions of Fig. 6), using linear-averaging to calculate the 
“effective” advective velocities. Solid contours are downward flow, dotted contours are upward. 
The contour interval is 4 decapascals hr-t. 
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convective cells through the coupling of wind and temperature via the hydrostatic 
equation. 

As shown in Fig. 9, this breakdown is a quite separate phenomenon from problems 
such as nonlinear instability. The graph presents the time history of surface tempera- 
ture at the equator for the following four cases: (1) “flux-weighted” averaging with a 
time step of 0.5 hr; (2) linear averaging with a time step of 0.5 hr; (3) “flux-weighted” 
averaging with a time step of 1 .O hr; and (4) linear averaging with a time step of 0.25 hr. 
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FIG. 9. Time history of surface temperature at the equator for the four cases discussed in text, 
starting from the near steady-state conditions of Figs. 5 and 6. 

The results of Case 1 show small adjustments occurring at each time step as the 
solution evolves to a steady state. Similar results are obtained in Case 2 during the 
first 12 hr of the simulation, but beyond that time, the solution becomes unstable 
exponentially once the instability is initiated. 

The difference between the instability of Case 2 and the so-called “time-step” 
computational instability (Case 3) is the difference between exponential growth and 
oscillatory growth. When the time step for the linear averaging case was reduced by a 
factor of two (Case 4), the results diverged from the solution of Case 1 at about the 
same time step as in Case 2. 

Had the instability of the solution in Case 2 been due to “time-step” computational 
instability, then the instability of Case 4 would have occurred much later than when it 
occurred in Case 2. Had the instability of Case 2 been related to the number of time 
steps, then the instability of Case 4 would have occurred after about 6 hr of simulated 
time. Other possible causes for the instability of Cases 2 and 4, such as inconsistent 
calculation of the vertical velocity, have been studied and ruled out. 



ADVECTION IN FLUX FORMULATIONS 147 

4. SUMMARY 

The increasingly widespread use of the flux form of the conservation equations in 
numerical simulations (because of its numerical advantages and conservative proper- 
ties) is shown to require careful consideration when utilized in conjunction with a 
nonuniform, staggered grid. In particular, careful attention must be paid so that the 
value of a parameter at a grid point will be calculated so as to represent the mean value 
of that parameter over its grid interval when that value is to be used in a flux computa- 
tion. 

A linear averaging approach to specifying “effective” advective velocities results 
in a representative velocity, but an unrepresentative flux, and leads to grid-sized 
convective motions in both a global climate model and an urban boundary layer 
model. Use of a proposed “flux-weighted” effective velocity, which takes cognizance 
of the discrete nature of fluids resulting from finite differencing, leads to smoother and 
more realistic motion fields in the two models for which comparisons were made. 

APPENDIX A: DETAILS OF SIMPLIFIED URBMET MODEL 

Since the flow is incompressible, ZJ and w are related to a stream function # by 

u = a*jaz, 6-W 
w = -a*lax, (W 

and thus from Eqs. (2) and (Al) 

5 = ayqa22. (A3) 

In the analytical surface boundary layer, the following form of the logarithmic 
wind profile is assumed. 

u=J$-m(T), (A4) 

where u* is the friction velocity, z0 is the specified surface roughness parameter, taken 
as 50 cm, and k. is the von Karman constant, taken as 0.4. 

The following boundary conditions are assumed. 

Atz =o, 
u = a*laz = 0, 
w = -a+/ax = 0, 

which imply a constant value of #, taken as zero for convenience; 

(A5) 

G4Q 

Atz=h, 
continuity of u and au/az; (A7) 
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u = a*jaz = k u, WI 
aupz = 5 = aylaz2 = 0, W) 

where U, taken as +3 m set-l in the left half of the model, changes sign in the right 
half of the model. 

The continuity condition of Eq. (A7) is given as 

u(3h/2) - u(h/2) au 
AZ = az,’ ( ) WO) 

where near the surface AZ has the same magnitude as h. The value of u(3h/2) is 
known from the finite difference solution, while @z/2) and (&/a~), are obtained from 
Eq. (A4) and its vertical derivative. When these substitutions are made in Eq. (AIO), 
and the resulting expression solved for U* , the following is obtained. 

ko + zo) 43w2) 
‘* = h + (h + zJ ln[(0.5h + z&/z,] . (All) 

The system of equations is solved at a given time step on the grid given in Table I as 
follows: u* from Eq. (Al 1); u(h/2) and (au/az), from Eq. (A4) and its vertical deriva- 
tive; 5 from Eqs. (3) and (4); $ f rom (A3), using a form of the Gaussian elimination 
[lo] method which has been modified to take into account the variable nature of the 
grid; and, finally, u and w from the finite difference analogs to Eqs. (Al) and (A2) 

G4W 

6413) 

Note that the velocity in Eq. (A12) is that appearing on the right-hand side of Eq. (9). 
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